On A Priori Error Analysis of Fully Discrete Heterogeneous Multiscale FEM

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On A Priori Error Analysis of Fully Discrete Heterogeneous Multiscale FEM

Heterogeneous multiscale methods have been introduced by E and Engquist [Commun. Math. Sci., 1 (2003), pp. 87–132] as a methodology for the numerical computation of problems with multiple scales. Analyses of the methods for various homogenization problems have been done by several authors. These results were obtained under the assumption that the microscopic models (the cell problems in the hom...

متن کامل

Coupling heterogeneous multiscale FEM with Runge-Kutta methods for parabolic homogenization problems: a fully discrete space-time analysis

Numerical methods for parabolic homogenization problems combining finite element methods (FEMs) in space with Runge-Kutta methods in time are proposed. The space discretization is based on the coupling of macro and micro finite element methods following the framework of the Heterogeneous Multiscale Method (HMM). We present a fully-discrete analysis in both space and time. Our analysis relies on...

متن کامل

Time-discrete higher order ALE formulations: a priori error analysis

We derive optimal a priori error estimates for discontinuous Galerkin (dG) time discrete schemes of any order applied to an advection-diffusion model defined on moving domains and written in the Arbitrary Lagrangian Eulerian (ALE) framework. Our estimates hold without any restrictions on the time steps for dG with exact integration or Reynolds’ quadrature. They involve a mild restriction on the...

متن کامل

New A Priori FEM Error Estimates for Eigenvalues

We analyze the Ritz–Galerkin method for symmetric eigenvalue problems and prove a priori eigenvalue error estimates. For a simple eigenvalue, we prove an error estimate that depends mainly on the approximability of the corresponding eigenfunction and provide explicit values for all constants. For a multiple eigenvalue we prove, in addition, apparently the first truly a priori error estimates th...

متن کامل

Fully discrete analysis of the heterogeneous multiscale method for elliptic problems with multiple scales

A fully discrete analysis of the finite element heterogeneous multiscale method (FEHMM) for elliptic problems with N + 1 well separated scales is discussed. The FEHMM is a numerical homogenization method that relies on macroscopic scheme (macro FEM) for the approximation of the effective solution corresponding to the multiscale problem. The effective data are recovered from micro scale computat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Multiscale Modeling & Simulation

سال: 2005

ISSN: 1540-3459,1540-3467

DOI: 10.1137/040607137